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Simple geometrical considerations are used to obtain an equation for a binary 
correlation function in the system of rigid spheres of equal radii. A self-con- 
sistent method of introducing an effective volume assigned to a single particle, 

makes possible the determination of the binary correlation function for the 
systems with a low and a moderate volume concentration of the particles. In 

the limiting case of low volume concentrations, the equation for the binary 
function becomes indentical with the known linearized Kirkwood [l ,2] super- 
position app~x~ation equation. Following [3] t it is assumed that the initial 
particle distribution is realized in such a manner that the positions of their 

centers are assigned one after the other, and the center of each new particle 
can be found with equal probability in any geometrically accessible part of 

the region occupied by the suspension. 

Experimental data concerning the relative distribution of spheres in a liquid 
of the same density following a vigorous shaking of the mixture, are given in [4] s The 
binary correlation function obtained in this paper by statistical treatment of a large 
number of measurements of the relative distances between the sphere centers indicates 
the presence of a short range order in the particle distribution. A decisive part is played 
here by the geometrical effect related to the impermeability of the spheres which re - 

suits in their layer-type distribution in the neighborhood of the specified particle ir- 

respective of the character of the hydrodynamic interaction. 
Study of the spatial distribution of a monodisperse system of spherical particles 

falling trough a liquid at a volume concentration of 0.025 and the Reynolds number 
for a separate particle equal to 6.6, have shown that 151 the probability of finding 
particles within a certain volume has an approximately binomial character, This in - 

dicates that all positions of the center of a single particle are equally probable within 
a geometrically accessible region and implies that the hydrodynamic forces acting be- 
tween the particles do not have a decisive influence on the form of the binary corre - 
lation function. For the particles in a viscous fluid of comparable density, a small 
region corresponding to the interparticle distances comparable to the particle diameter, 
constitutes an exception l 

1. C-I&ion iun&onr , Let us consider a system containing a very large num- 
ber N, of identical particles (spheres of radius a) located in a volume V,. We 
use, as the characteristic parameters of this system, the number n = N, / V, of the 

sphere centers per unit volume and the volumeconcentration of the particles c = 4/@=3n . 
In a system consisting of a large number of chaotically distributed spheres, the positions 
of their centers can only be determined with a certain probability. Let dWl fx) and 
dW, (x1, x2) denote respectively the probability of finding the center of an arbitrary 
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particle in the neighborhood of the point x , and the probability of finding the cen- 
ters of two, arbitrarily selected particles in the neighborhood of the points x1 and x2. 
Let, in addition, dW, (x,; x2) denote the probability of discovering the center of a 
specified particle in the neighborhood of x1 when the center of another particle is 
fixed at the point x2. We introduce the dimensionless correlation functions fr (X), 

f2 (x,, x2) and fr (x1; x2) by means of the following formulas: 

dW, (x) - V,-if, (x) dx (1.1) 

dW, (x,, x2) = v,-2f2 (XI, x,)dWx2 

dW, (xl; x2) = V,-'fl (xl; x2)% 

f2 (%t x2) = fl b2)fi (x1; x2) 

where the last equation follows from the theorem on multiplication of probabilities, 
In what follows , we shall concern ourselves with a spatially homogeneous sys- 

tem , and this is found at a sufficient distance from the boundary surfaces of the volume 
V _. In this case all positions of a particle are equally probable and from (1.1) we 

have 
fl (XI = 1, fl (x1; x2) = f2 (Xl, x2) 

Moreover, in this case the distribution of the spheres near the specified sphere 
will be spherically symmetrical in the mean. For this reason the function f2 (XI, %) 
will depend on a single argument, namely the distance between the centers of the part- 
icles in question, so that 

fi (x1, $1 = g (4, 7 = I Xl - x2 I 

Thus in the case of a spatially homogeneous system the function g (P) is not 
curly a binary correlation function, but also a conditional correlation function,The mean 
number of the sphere centers which can be found in a spherical layer (P, P + dr) is: 

dN (r) = 4nr2ng(r)dr (1.2) 

The above formula will be used in processing experiments dealing with the distribution 
of spherical particles in a liquid C4 1. 

2, Effective volume of a sphere in the sydexn . Let us denote by w- (rr, ?a; k) 
the volume of a region formed by intersection of a sphere of radius rl with another 
sphere of radius ra f rl when the distance separating the two centers is $2 (? ir12 f 

71 + 72). We denote by w+ (rr, r2; r12) the volume of the part of the sphere of radius 

r2 which lies outside the sphere of radius rl Z r2 , with the distance between the 
sphere centers equal to rl - r2 < r12 < rl.(see Fig. 1). Let us write the functions UI_ 
and w+ in explicit form 

w- (rl, r2; r12) = n [r13T_ (0) + r,*T_ (0’)l (2.1) 

w+ (b r2$ rl2) = 
{ 

r~ [r,ST+ (0’) - r13T_ @)I, ~0s 0’ < 0 
4/+r2a - n [r13T_ (8) + rzST_ @‘)I, cos 0’ > 0 

ST,(e)= 2 k3COSe+ COS'e 

cake = 

r12 $- rlt2 - rla r122 + r22 - 7.12 

2rlrl2 
-9 cosw = 

32r12 



A.M. Golovin and V. E. Chizhov 

where the angles 8 and 8’ are shown in the figure, 
The ~ncffons u‘s and u:_ have the following obvious properties: 

U’i @-i, rz; r1) -I- U‘_ (PI, r,; Q) = 4/$rr 3 
(2.2) 

2 

U’_ (G, 72; Tl + &I = ID+ (q, r,; r, - f*) = 0 

Despite the fact that the functions u:+ and u‘_ are defined in different regions, we 

have the following formal relation: 

alO_ &O+ (2.3) 

ar, = - ar, - = 2ti3”12 (1 - cos 8) 

Let us introduce the concept of effective volume and effective radius into the 
system of chaotically moving spheres _ Let 2’~ = ‘isna3 be the specific volume of a 
particle. We define the effective volume of a particle in the system as the increase in 
the volume of the region inaccessible to the centers of other particles of the same size 
when the number of particles in the system is increased by one. 

First we consider the case of very small volume concentrati~s . We choose one 
of the particles of the ensemble as a sample particle and surround it with a sphere Sd 

of radius 2e concentric with the sample particle. The part of the space bounded by the 
sphere Sd is “inaccessible” to the centers of the remaining particles. As far as these 

centers are concerned S the sample particle has effective radius of 2a and effective 
volume of 8~ . 

Increasing the volume concentration leads to an overlap of the neighing 

spheres Sd . At moderate volume concentrations the overlaps will mainly involve 
pairs of spheres, i. e. the overlaps invol~ng three or more particles will be, onaverage, 
few. Estimates carried out for a model of cubic dist~bu~on of spheres show that the 
gumption of the binary character of the sphere overlap holds for the concentrations up 
to c S 0.2. 

The overlapping of spheres sd reduces the volume of the inaccessible regions 
computed for a single particle as compared with &,, although the radius of the in - 

accessible region surrounding the separate particles remains equal to 2a . Since the 

spheres sd constructed for the sample sphere and its neighbor have a common part, 
the volume 8v, is reduced by an amount equal to half the volume of the common 
part,i.e. by the quanta ‘/SW- (2% 2 a; rrs). The average number of the particle cen- 

ters at the distance (rrs, ris + dr& from the center of the sample particle is equal, in 

accordance with (1.2 ), to hrl,2ng (F,,)&,, , and the effective volume of a particle in 
the system is therefore 

dsr 
v0 = 8vc - 2?Tn 

s 
* r&Z (r& W_ @a, 2ff; r12) dFi2 (2.4) 

2a 

The formula (2.4) defines the effective volume in the case of moderate concentrations. 
At high concentration of particles the effective volume of a sphere at a distance 

f from the sample sphere should depend on a three-particle correlation function 
which can be expressed in terms of the binary correlation function only at low volume 
concentrations. 

Making use of the earlier assumption of homogenei~ and spherical symmetry 
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(in the mean) of the system, we can write the effective radius of the particle in the form 

ra = (3/& I n)‘” (2.5) 

where vo and ra denote the mean statistical characteristics of the system of spheres, 

and depend only on the volume concentration c. 

3, Equation of the binary correlations functfo~. Let us choose and fix a center 

of an arbitrary (sample )sphere belonging to the system in question. We draw a sphere 
of radius r concentric with the sample sphere. According to (1.2) the determination 

of the function g k) requires the knowledge of the average number N (r) of the sphere 
centers lying within the sphere of radius r . Let v = V, / N, denote the mean vo- 
lume of a single particle in the system. This is clearly equal to the mean free volume 
per center, of an arbitrary particle in the system. 

We introduce V (r) = v N (r) as mean free volume per N (r) particle centers. 

Then the relation (1.2) assumes the form 

1 
g @) - 4srrs 

dV (4 --- 
dr 

(3.1) 

When r I a + CO, then clearly V (r) --f 4/3nr3. If however r - a, then the 

influence of the neighboring spheres the centers of which are distributed within the layer 

from r to r i- dr, manifests itself by reducing the free volume within the sphere of 
radius r by the amount 

r+r0 
V_ (r) = 4nn 

s r&f (rd w- (r., ro: rd drl, 
r 

Spheres with the centers within the layer (r - ro, r) reduce the free volume outside the 

sphere of radius r by the amount 

V+ (r) = 4am 5 r& (r& w+ (r, r0; rd h2 

When r - r. < 2a , the lower limit of integration in the expression above must 
be replaced by 2a. This is because two impermeable spheres cannot approach each 
other closer than the distance of 2a between their centers. We can however leave the 
formula unchanged by setting g (r) E 0 when r < 2a . Thus at r > 2a we have 

V (r) = 4/3nr3 - DO + V+ (r) - V_ (r) 

Relation (3.1) and the properties (2.2) and (2.3) of the functions w+ and w- 

together yield the following equation for the binary correlation function: 

t+r0 

(1 - nv,) g (r) = 1 - 2nn 
s 

rlf (1 - co9 9) g ha) drl,, r > 2~2 (3.2) 
f-l.0 

where cos e is given by the formula (2.1) . Let us introduce the notation 

( ) 

3 

To=+ , EC*, zL-- 

r0 

5% 2 

y=‘ot A= &o 



1166 
A.M. Golovin and V. E. Chizhov 

and consider, instead ot g (5) , a new unknown function cp (x) = z [g (5) - 11. From 
(3.2) follows 

cp (I) = + 

x+1 

s cP(Y)~(~-YY)2--l~Y. s>E (3.3) 

X-l 

v(x)=-x, O<x<k 

For the low concentrations we obviously have E = 1 and Eq. (3.3 ) becomes 
the linearized equation of superposition approximation known in the theory of liquids 
and obtained earlier in [l ,2] using the methods of statistical mechanics. The solution 
of (3.3) has the following form with the accuracy of up to and including the terms of 
order c : 

cz(8-66s+1/,x3), i<r<2 
q (4 = {o.. r > 2 

In the region of moderate concentrations however, Q. (3.3 ) differs from the 

linearized equation of [l ,2] in, that in the present paper the region 0 < r < 2a where 
g (p) = 0, does not correspond to the region 0 < x < 1 where x, is a dimension- 

less variable. The difference is apparently connected with the introduction of the effec- 
tive radius of interaction between the particles which depends on the binary correlation 

function. 

4. Computation of the biaary correlation fun&ion. Following U 1, we extend 
Q. (3.3) to the whole of the real axis putting cp (-x) = cp (x) for x < 0 and intro- 
ducing the inhomogeneity function 9 (I) = $ (-2) unknown for the time being and 

vanishing at I x I> g : 
co 

cp (5) = Q (2) + + 1 K@-Y)cp(y)dy, --oo<x<a, (4.1) 
-cQ 

$(x) = 0, r=I>t 

-ll,lXl<l 
K Cx) = {g 1 x I> 1 

The function $J (x) is found from the condition: cp (x) = - I x 1 when I z I < E. 
Since K (x) and Ip (x) are both finite and cp (x) can be assumed, from the physical 
arguments, to belong to class L, (--co, co), a solution of (4.1) unique in L, (-00, ~0) 

can be constructed using the following formulas [6]: 

cp (2) = 4 (2) + ‘s 1 (z - Y) 9 (Y) dY 
--4 
00 

l(2) = - 2; 
s 

L (io) lria 
1 + hL (io) do 

-co 
OD 

L (2) = - -+ 
s 

K(s)e”dz =&(rchz-shz) 
--m 

Let us first consider Eq. (4.2) on the Interval 1 z 1 < E (where ‘p (x) = 
We can find the function 4 (x) by solving the equation 

(4.2) 

-1x1). 
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(4.3 ) 

Further, using (4.2) we can construct q (x) for x >, E 

E 

cp (5) = 1 I@ - Y) II, (Y) dY 

-4 

(4.4) 

To find the functions 21, (5) and ‘p (5) from (4.3) and (4.4), we must know 1 (4 at 

IsI< E. Knowing the zeros of the function M (z) = 1 -I- hL (z), we can use the 
theorem of residues to transform the integral defining 1 (z) in (4.2) to the form suit- 

able for numerical methods. 
The function M (2) is an analytic and entire function. Its zeros obviously co - 

incide with the roots of the equation 

z3 = h (sh z - .z ch z) (4.5) 

It should be noted that if Z, is a root of (4.5 ), so are %, --Zn and--z’n(the 
upper bar denotes a complex conjugate ) .The right-hand side of (4.5 ) contains a trans- 
cendental entire function, and the left-hand side contains a polynomial. The gener - 

alization of the Picard’s Theorem implies that such an equation has, for all h except 

perhaps one, infinitely many roots such that I z, ! -+ 00 as n + co [‘7 1. The authors 

of Cl] computed, for some values of h , the roots zr and zz of (4.5 ) with the 

smallest moluli. The asymptotic behavior of the roots Z, as n+oo canbeestab- 

lished for all h by considering Eq. (4.5 ) in which only the terms with largest moduli 
remain 

8xW 
2, =*lnp 5 n--too 

The Jordan Lemma can be used to compute 2 (z) 

m exp (- Z,Z) 
’ k) =- 2 M’(q I z>o 

n=i 

(M’ (z) = dM (z)/dz) 

(4.6) 

The series in (4.6 ) extends over those 2, for which Re z, > 0. Another expression 
for 1 (2) can be obtained by writing the function L (z) in the form 

z+l 
L (2) = + e* + 23 e-* 

and separating the integral defining I (5) into two integrals. ApplyingtheJordanLemma 
and theory of residues to each of these integrals yields the following results: 

(4.7) 
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The sum in the formula (4.7) is distributed, just as in (4.6), over the 2, which have 

Re z., > 0. The expression (4.7) was given in [I] in a somewhat distorted form. 

The analysis carried out in [l] shows that the formula (4.6) in which the series 

is replaced by just first two terms contending to zI and El, approximate 2 (x) 
sufficiently well when z 2 1 , and a two-term formula (4.7 ) where the series is again 
replaced by the first two terms approximates / (2) sufficiently well when 1 s 1 < 1. In 
the present paper the function I (z) was taken, for the numerical computations, as 

two-term formulas on the intervals P < 1 and I > 1 . Having found 1 (x), the 
authors determined Q (r) for 1 z 1 < E using (4.3 ) which was transformed into a 
system of linear algebraic equations by replacing the integral term by its Simpson Me 
equivalent, Relation (4.4) was thenused to obtain the required function fi (x) = 1 i- ‘p ( 
.z) / LX. The problem of unique deter~nation of g (x) for various values of c is self- 
consistent, since the effective radius 70 and parameter 5 entering (4.4 ) and 
(4.5) both depend on the function g (x). Determination of the relations z‘,, = Q (L’) 
and 70 = r. (c) and construction of the binary correlation function were carried out 
by iterative method using the formulas (2.4) and (2.5 ). Below we give the resulting 

relation r. (c) : 

c 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

‘r, 7.28 6.89 6.47 6.03 5.56 5.97 4.59 3.72 3.15 

We see that the dimensionless effective volume z. decreases monotonously, 
as was expected, with increasing volume concentration. We note that the formula (2. 
4).cannot be used for the concentrations which are almost maximum, since in this case 
the contribution of the triple and higher order overlaps of the spheres S,I , which is 

not accounted for in (2,4), becomes considerable. 

Figure 1 shows the graphs of g (r) for various values of c. An increase in 

the volume concentration is accompanied by the increase in the amplitude and decrease 

in the damping of the oscillations. This implies that at moderate volume concentrations 

of the particles any correlation between the positions of their centers practically vani- 
shes at the distance equal to several radii of the particles. At sufficiently large distances 

from the center of the sample particle all positions at which the center of the given 

particle can be found, become equally probable, The dashed line in the Fig. 1 depicts 

the results of the computation of a correlation function obtained in [Z] for E = 0.144. 
It can be assumed that at small and moderate concentra~ons the results of this paper are 
in satisfactory agreement with the results obtained earlier. 

In the statistical mechanics the function g (P) is used to construct an equation 

of state for a gas composed of rigid spheres, and the equation has the form 

p / (nkT) = 1 + 4cg (2a) (4.8 ) 

where P is pressure, T is temperature and k is the Boltzmann’s constant. The 
fO~ow@ virial expansion of the equation of state in powers of the volume concentration fs 
given in [S ] : 

p / (nkT) = 1 + 4c + IO? + (4.9) 
18.36~~ + (29.44 rtr. 1.28)~~ + . . . 
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Below we give the results of computing the quantity p / (r&T) according to 
(4.8) and(4.9): 

(4:s) 0.04 1.18 0.06 1.28 0.08 1.40 0.10 1.54 0.12 1.71 0.14 1.89 0.16 2.06 2.23 0.18 2.41 0.20 

(4.9) 1.18 1.27 1.38 1.52 1.66 1.82 1.99 2.18 2.39 

which show good agreement (wife 2 - P/o) with the virial expansion (4.9 ). 
In conclusion ) we consider the problem of the ~ymptotics of the function cp (z) 

when zc > 1. This requires, according to the formula (4.4 1, the knowledge of the 
behavior of 1 (2) when z > 1. The modulus of the general term of (4.6 ) can be 
shown, using the asymptotics of the roots z, derived above, to have the following 
form at large n : 

I 

e=p (- 22) h x 1 

Af’ (%z) I( )- 
-= nzx 

and this proves that i (a, and therefore also ‘p M, decrease exponentially as z + 03 
provided that h < 8n2. 

2 3 4 

Fig. 1 

r/a 
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